Intel Core m3-8100Y
VS
Intel Celeron N4500
Intel Core m3-8100Y
VS
Intel Celeron N4500

Which to select

It is time to pick the winner. What is the difference between Intel Core m3-8100Y vs Intel Celeron N4500? What CPU is more powerful? It is quite easy to determine – look at comparison table. The processor with more cores/ threads and also with higher frequency is the absolute winner!

CPU Cores and Base Frequency

Who will win between Intel Core m3-8100Y vs  Intel Celeron N4500. The general performance of a CPU can easily be determined based on the number of its cores and the thread count, as well as the base frequency and Turbo frequency. The more GHz and cores a CPU has, the better. Please note that high technical specs require using a powerful cooling system.

1.10 GHz
Frequency
1.10 GHz
2
CPU Cores
2
3.40 GHz
Turbo (1 Core)
2.90 GHz
No turbo
Turbo (2 Cores)
2.40 GHz
Yes
Hyperthreading
No
No
Overclocking
No
Core architecture
normal
A core
0x Tremont
B core
0x

CPU generation and family

Internal Graphics

Some manufacturers complement their CPUs with graphic chips, such a solution being especially popular in laptops. The higher the clock frequency of a GPU is and the bigger its memory, the better. Find a winner - Intel Core m3-8100Y vs Intel Celeron N4500. 

Intel UHD Graphics 615
GPU name
Intel UHD Graphics (Tiger Lake G4)
0.30 GHz
GPU frequency
0.30 GHz
0.90 GHz
GPU (Turbo)
1.10 GHz
9.5
Generation
11
12
DirectX Version
12
24
Execution units
48
192
Shader
384
16 GB
Max. Memory
8 GB
3
Max. displays
3
14 nm
Technology
10 nm
Q4/2018
Release date
Q3/2020

Hardware codec support

Here we deal with specs that are used by some CPU manufacturers. These numbers are mainly technical and can be neglected for the purpose of the comparison analysis.

Decode / Encode
h264
Decode / Encode
Decode / Encode
JPEG
Decode / Encode
Decode / Encode
h265 8bit
Decode / Encode
h265 10bit
Decode / Encode
VP8
Decode
Decode / Encode
VP9
Decode
Decode
VC-1
Decode
Decode / Encode
AVC
Decode
h265 / HEVC (8 bit)
Decode / Encode
h265 / HEVC (10 bit)
Decode / Encode
AV1
No

Memory & PCIe

These are memory standards supported by CPUs. The higher such standards, the better a CPU’s performance is.

DDR3L-1600 SO-DIMM, LPDDR3-1866
Memory type
DDR4-3200LPDDR4X-4266
16 GB
Max. Memory
32 GB
2
Memory channels
2
No
ECC
No
3.0
PCIe version
3.0
10
PCIe lanes
12

Encryption

Data encryption support

Yes
AES-NI
Yes

Memory & AMP; PCIe

Thermal Management

The thermal design power (TDP), sometimes called thermal design point, is the maximum amount of heat generated by a computer chip or component (often a CPU, GPU or system on a chip) that the cooling system in a computer is designed to dissipate under any workload.

5 W
TDP
100 °C
Tjunction max.
--
8 W
TDP up
--
4.5 W
TDP down
--
TDP (PL1)
6 W
TDP (PL2)
--

Technical details

4
CPU Threads
2
4.00 MB
L3-Cache
4.00 MB
14 nm
Technology
10 nm
Amber Lake Y
Architecture
Jasper Lake
VT-x, VT-x EPT, Vt-d
Virtualization
VT-x, VT-x EPT, VT-d
BGA 1515
Socket
BGA 1090
Q3/2018
Release date
Q1/2021
ca. 281 $
Market price
EM64T
Instruction set (ISA)
x86-64 (64 bit)
512 KB
L2-Cache
--
none
Part Number

Devices using this processor

You probably know already what devices use CPUs. These can be a desktop or a laptop.

Notebooks HP, ACER, Lenovo, ASUS, MSI
Used in
Unknown

Compatibility

Technologies and extensions

Virtualization technologies

Memory specs

Peripherals

Cinebench R15 (Single-Core)

The latter is used for creation of 3D models and forms. Cinebench R15 is used for single-core processor performance benchmark test. The hyperthreading ability doesn't count. It is the updated version of Cinebench 11.5. As all new versions, the updated benchmark is based on Cinema 4 Suite software

Cinebench R15 (Multi-Core)

Cinebench R15 can be used for multi-core processor performance benchmark testing. The test produces precise and accurate results. This benchmark is the updated version of the Cinebench 11.5 which is based on Cinema 4 Suite soft.

Cinebench R20 (Single-Core)

Cinebench R20 is based on Cinema 4 Suite. It is the software used to create 3D forms. The benchmark runs for single-core test procedure without counting of hyperthreading ability.

Cinebench R20 (Multi-Core)

It is the new version of the benchmark which is developed on the basis of Cinebench R15 (both versions are operated on the basis of Cinema 4 - the most popular 3D modeling software). Cinebench R20 is used for multi-core processor performance benchmark tests and hyperthreading ability.

Geekbench 3, 64bit (Single-Core)

Geekbench 3 is the benchmark for Intel and AMD 64-bit processors. It employs a new power estimation system for a single CPU core. This software carries out the modeling of real scenarios to provide accurate results

Geekbench 3, 64bit (Multi-Core)

Geekbench 3 benchmark supports AMD and Intel multi-core processors. Being based on MAXON CINEMA 4D, it allows obtaining the real comparative CPU potential

Estimated results for PassMark CPU Mark

It tests entire and overall performance of the central processing unit (mathematical calculations, compression and decompression speed, 2D&3D graphic tests). Please note that data can differ from the real-world situations.

iGPU - FP32 Performance (Single-precision GFLOPS)

This test serves for determining the performance of integrated graphics in Intel and AMD processors. The result is the estimated computing power in the Single-Precision FP32 mode