Intel Celeron N4500
VS
AMD A4-9120
Intel Celeron N4500
VS
AMD A4-9120

Which to select

It is time to pick the winner. What is the difference between Intel Celeron N4500 vs AMD A4-9120? What CPU is more powerful? It is quite easy to determine – look at comparison table. The processor with more cores/ threads and also with higher frequency is the absolute winner!

CPU Cores and Base Frequency

Who will win between Intel Celeron N4500 vs  AMD A4-9120. The general performance of a CPU can easily be determined based on the number of its cores and the thread count, as well as the base frequency and Turbo frequency. The more GHz and cores a CPU has, the better. Please note that high technical specs require using a powerful cooling system.

1.10 GHz
Frequency
2.20 GHz
2
CPU Cores
2
2.90 GHz
Turbo (1 Core)
2.50 GHz
2.40 GHz
Turbo (2 Cores)
2.20 GHz
No
Hyperthreading
No
No
Overclocking
No
normal
Core architecture
0x Tremont
A core
0x
B core

CPU generation and family

Internal Graphics

Some manufacturers complement their CPUs with graphic chips, such a solution being especially popular in laptops. The higher the clock frequency of a GPU is and the bigger its memory, the better. Find a winner - Intel Celeron N4500 vs AMD A4-9120. 

Intel UHD Graphics (Tiger Lake G4)
GPU name
AMD Radeon R3 (Stoney Ridge)
0.30 GHz
GPU frequency
0.66 GHz
1.10 GHz
GPU (Turbo)
No turbo
11
Generation
7
12
DirectX Version
12
48
Execution units
2
384
Shader
128
8 GB
Max. Memory
2 GB
3
Max. displays
3
10 nm
Technology
28 nm
Q3/2020
Release date
Q2/2016

Hardware codec support

Here we deal with specs that are used by some CPU manufacturers. These numbers are mainly technical and can be neglected for the purpose of the comparison analysis.

Decode / Encode
h264
Decode
Decode / Encode
JPEG
Decode / Encode
h265 8bit
Decode
h265 10bit
Decode
Decode
VP8
Decode
Decode
VP9
Decode
Decode
VC-1
Decode
Decode
AVC
Decode / Encode
Decode / Encode
h265 / HEVC (8 bit)
Decode / Encode
h265 / HEVC (10 bit)
No
AV1

Memory & PCIe

These are memory standards supported by CPUs. The higher such standards, the better a CPU’s performance is.

DDR4-3200LPDDR4X-4266
Memory type
DDR4-2133
32 GB
Max. Memory
8 GB
2
Memory channels
1
No
ECC
No
3.0
PCIe version
3.0
12
PCIe lanes
8

Encryption

Data encryption support

Yes
AES-NI
Yes

Memory & AMP; PCIe

Thermal Management

The thermal design power (TDP), sometimes called thermal design point, is the maximum amount of heat generated by a computer chip or component (often a CPU, GPU or system on a chip) that the cooling system in a computer is designed to dissipate under any workload.

TDP
15 W
--
Tjunction max.
90 °C
--
TDP up
--
--
TDP down
10 W
6 W
TDP (PL1)
--
TDP (PL2)

Technical details

2
CPU Threads
2
4.00 MB
L3-Cache
2.00 MB
10 nm
Technology
28 nm
Jasper Lake
Architecture
Stoney Ridge (Excavator)
VT-x, VT-x EPT, VT-d
Virtualization
AMD-V, AMD-Vi
BGA 1090
Socket
FP4
Q1/2021
Release date
Q2/2017
x86-64 (64 bit)
Instruction set (ISA)
--
L2-Cache

Devices using this processor

You probably know already what devices use CPUs. These can be a desktop or a laptop.

Unknown
Used in
Unknown

Compatibility

Technologies and extensions

Virtualization technologies

Memory specs

Peripherals

Estimated results for PassMark CPU Mark

It tests entire and overall performance of the central processing unit (mathematical calculations, compression and decompression speed, 2D&3D graphic tests). Please note that data can differ from the real-world situations.

iGPU - FP32 Performance (Single-precision GFLOPS)

This test serves for determining the performance of integrated graphics in Intel and AMD processors. The result is the estimated computing power in the Single-Precision FP32 mode