AMD Phenom II X3 705e
VS
Intel Celeron 3965U
VS

Which to select

It is time to pick the winner. What is the difference between AMD Phenom II X3 705e vs Intel Celeron 3965U? What CPU is more powerful? It is quite easy to determine – look at comparison table. The processor with more cores/ threads and also with higher frequency is the absolute winner!

CPU Cores and Base Frequency

Who will win between AMD Phenom II X3 705e vs  Intel Celeron 3965U. The general performance of a CPU can easily be determined based on the number of its cores and the thread count, as well as the base frequency and Turbo frequency. The more GHz and cores a CPU has, the better. Please note that high technical specs require using a powerful cooling system.

2.50 GHz
Frequency
2.20 GHz
3
CPU Cores
2
No turbo
Turbo (1 Core)
No turbo
3
CPU Threads
2
no data
Turbo (2 Cores)
No turbo
No
Hyperthreading
No
Yes
Overclocking
No
No turbo
Turbo (3 Cores)
no data

CPU generation and family

Internal Graphics

Some manufacturers complement their CPUs with graphic chips, such a solution being especially popular in laptops. The higher the clock frequency of a GPU is and the bigger its memory, the better. Find a winner - AMD Phenom II X3 705e vs Intel Celeron 3965U. 

GPU name
Intel HD Graphics 610
GPU frequency
0.30 GHz
No turbo
GPU (Turbo)
0.90 GHz
Generation
9.5
DirectX Version
12
Execution units
12
Shader
96
--
Max. Memory
32 GB
Max. displays
3
Technology
14 nm
Release date
Q3/2016

Hardware codec support

Here we deal with specs that are used by some CPU manufacturers. These numbers are mainly technical and can be neglected for the purpose of the comparison analysis.

No
h264
Decode / Encode
No
JPEG
Decode / Encode
No
h265 8bit
Decode / Encode
No
h265 10bit
Decode / Encode
No
VP8
Decode / Encode
No
VP9
Decode / Encode
No
VC-1
Decode
No
AVC
Decode / Encode

Memory & PCIe

These are memory standards supported by CPUs. The higher such standards, the better a CPU’s performance is.

DDR2-1066
Memory type
DDR3L-1600 SO-DIMM DDR4-2133 LPDDR3-1866
Max. Memory
32 GB
2
Memory channels
2
No
ECC
No
PCIe version
2.0
PCIe lanes
10

Encryption

Data encryption support

No
AES-NI
Yes

Thermal Management

The thermal design power (TDP), sometimes called thermal design point, is the maximum amount of heat generated by a computer chip or component (often a CPU, GPU or system on a chip) that the cooling system in a computer is designed to dissipate under any workload.

65 W
TDP
15 W
--
Tjunction max.
100 °C
--
TDP up
--
--
TDP down
10 W

Technical details

6.00 MB
L3-Cache
2.00 MB
45nm
Technology
14 nm
Heka
Architecture
Kaby Lake
AMD-V, AMD-RVI
Virtualization
VT-x, VT-x EPT, VT-d
AM3
Socket
BGA 1356
Q2/2009
Release date
Q1/2017
Market price
ca. 107 $

Devices using this processor

You probably know already what devices use CPUs. These can be a desktop or a laptop.

Unknown
Used in
Unknown

Cinebench R15 (Single-Core)

It is the updated version of Cinebench 11.5. As all new versions, the updated benchmark is based on Cinema 4 Suite software. The latter is used for creation of 3D models and forms. Cinebench R15 is used for single-core processor performance benchmark test. The hyperthreading ability doesn't count.

Cinebench R15 (Multi-Core)

This benchmark is the updated version of the Cinebench 11.5 which is based on Cinema 4 Suite soft (it is widely used for 3D production). Cinebench R15 can be used for multi-core processor performance benchmark testing. The test produces precise and accurate results.

iGPU - FP32 Performance (Single-precision GFLOPS)

This test serves for determining the performance of integrated graphics in Intel and AMD processors. The result is the estimated computing power in the Single-Precision FP32 mode. The computing power in games can vary despite the differences in the capacity of videocards.

Geekbench 3, 64bit (Single-Core)

Geekbench 3 is the benchmark for Intel and AMD 64-bit processors. It employs a new power estimation system for a single CPU core. This software carries out the modeling of real scenarios to provide accurate results. The better the estimation, the faster your computer works.

Geekbench 3, 64bit (Multi-Core)

Geekbench 3 benchmark supports AMD and Intel multi-core processors. Being based on MAXON CINEMA 4D, it allows obtaining the real comparative CPU potential. The higher the indicator, the more powerful and fast the processor is.

Cinebench R11.5, 64bit (Single-Core)

This synthetic test will help you determine the real computing power of a single core in the central processing unit. Cinebench R11.5 is based on MAXON CINEMA 4D and employs various testing scenarios and branded power analysis algorithms. The higher the estimated value, the faster the computations of a single CPU core are.

Cinebench R11.5, 64bit (Multi-Core)

Cinebench R11.5 carries out simultaneous cross-platform tests on all the processor’s cores. By running realistic 3D scenes, this benchmark will reveal all the potential of your Intel or AMD single-unit processor. The winner is quite easy to identify - the higher the estimation, the faster the CPU is.

Estimated results for PassMark CPU Mark

PassMark is one of the most popular benchmark in the world. It tests entire and overall performance of the central processing unit (mathematical calculations, compression and decompression speed, 2D&3D graphic tests). Below you will see benchmark testing results for the processor and its score. Please note that data can differ from the real-world situations.